Proposal for a New Scientific Writing Guide

Scientific writing is in bad shape. Realizing that, and wanting to do something about it, was the starting point for my essay on the creation of a new journal, one that would rewrite some science papers in a better style and kickstart a movement to ultimately change the writing norms.

Since I published the essay last July, the Journal of Actually Well-Written Science (yeah, it needs a better name) has gone from “cool idea” to “project I’m actually trying to bring to life.” Many questions remain unanswered as to how best to proceed. But one important thing I must figure out is: What should the writing norms be changed to?

Today I’m committing to publish several short posts over the course of the next month to answer exactly that.

Below is some brief discussion of the two principles that will guide my thinking. They both center on the idea of minimizing effort, for the reader as well as for the writer. Writers should make some effort to ensure readers don’t have to (that’s the basic job of a writer), but I’ll focus on improvements that don’t require a lot of time and effort from writers, since those tend to be busy scientists.

I’ll also include a table of contents to easily access the posts as they are published.

Two effort-minimization principles

1) Minimum Reading Friction: Demand less cognitive resources from the reader

Science papers are usually technical. They deal with complex questions. They assume specialized background knowledge. They may involve math.

It is expected that papers be difficult to read. But we can at least make sure the writing doesn’t get in the way.

The first principle of this style guide says that you should do everything feasible to reduce the amount of effort readers will need to make when reading your paper. In other words, your job is to make their job easier.

If something — e.g. finding a good example to illustrate a point1like I just did! — asks some effort from you but reduces the effort readers will need to make when reading, then do it. Conversely, don’t make your own life easier if it’s going to make the reader’s life harder. An example would be using an abbreviation to spend less time typing at the cost of increasing the cognitive demands on the reader.

The larger your readership, the more important this principle is. If you write for one person (e.g. an email), then it doesn’t matter that much if it takes some work to read (although it might hurt your chances of getting a reply). But if you expect to be read by 1,000 people, then every abbreviation that saved you some inconvenience is now multiplied into an inconvenience for 1,000 people.

2) Low-Hanging Fruit: Focus on improvements that are easy to apply

“Writing well” is a complicated art. Developing it can be the project of a lifetime. Scientists are typically too busy for that.

Fortunately (for me), science writing is so bad that there’s a lot of low-hanging fruit to pick. Many improvements need little effort. For example, using fewer abbreviations results in less demanding reading without requiring advanced writing skills — you can often just replace the abbreviations with the unabridged terms. Splitting long paragraphs into smaller chunks is often as easy as adding a line break when you notice a shift to a different idea.

Such improvements can also be applied almost mechanistically, which is ideal for someone who rewrites a paper without being as intimate with the topic as the author is.

The second principle therefore says to focus primarily (but not exclusively) on the elements of style that require the least effort and skill relative to how much they improve the writing.

Other things to keep in mind

  • Keep the good current norms. The goal of this project is not to burn scientific writing down and rebuild it from scratch. For example, it is good that scientists, by default, try to avoid ornamented writing. This helps with precision and objectivity.
  • Formatting is an area that can be improved, but it’s a less tractable problem because it differs a lot between publications. For instance, citation style (e.g. footnotes vs. inline) can help or hinder reading. Still, I’ll eventually need to develop guidelines for formatting in JAWWS, so I will probably discuss it a few times.
  • Focus on the classic paper format. There are a lot of new, exotic ways that science could be communicated, but at first we’ll assume that papers — usually with traditional structures like intro-methods-results-discussion — will remain the main format in the foreseeable future.
  • Personal preferences can be hard to distinguish from objective quality measures. Of course, everything I propose will reflect what I personally look for in science writing. I think and hope most guidelines will be broadly popular, but I’m always open for feedback and I’ll tweak them if others make convincing arguments.

Table of contents

I will update this list as I publish the posts.

In the meantime, here’s a very informal list of topics I might cover:

  • Abbreviations
  • Paragraph length
  • Giving examples
  • Bullet points
  • Links
  • Citations and references
  • Point of view (1st vs 3rd person) and voice (active vs passive)
  • Humor
  • Flourishes, ornamentation
  • Paper structure
  • Length vs. clarity vs. density tradeoff
  • Figures
  • Reading guidance (e.g. “read the methods section to understand what we did, but feel free to skip the more technical section 2.3”)
  • Jargon, vocabulary, word choice
  • Writing in narrative form (a difficult skill!)


Last updated: November 12, 2021